The LLM Scientist Roadmap¶
约 83 个字 预计阅读时间不到 1 分钟
1. The LLM architecture¶
- Architectural Overview
 - Tokenization
 - Attention mechanisms
 - Sampling techniques
 
2. Pre-training models¶
- Data preparation
- Distributed training
 - Training optimization
 - Monitoring
 
 - Storage & chat templates
 - Synthetic data generation
 - Data enhancement
 - Quality filtering
 
3. Post-training datasets¶
- Training techniques
 - Training parameters
 - Distributed training
 - Monitoring
 
4. Supervised Fine-Tuning¶
- Rejection sampling
 - Direct Preference Optimization
 - Reward model
 - Reinforcement Learning
 
5. Preference alignment¶
- Automated benchmarks
 - Human evaluation
 - Model-based evaluation
 - Feedback signal
 
6. Evaluation¶
- Base techniques
 - GGUP and llama.cpp
 - GPTQ & AWQ
 - SmoothQuant & ZeroQuant
 
7. Quantization¶
- Model merging
 - Multimodal models
 - Interpretability
 - Test-time compute